首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1012篇
  免费   58篇
  国内免费   17篇
测绘学   16篇
大气科学   72篇
地球物理   276篇
地质学   362篇
海洋学   105篇
天文学   117篇
综合类   1篇
自然地理   138篇
  2023年   4篇
  2022年   6篇
  2021年   15篇
  2020年   21篇
  2019年   22篇
  2018年   26篇
  2017年   27篇
  2016年   34篇
  2015年   43篇
  2014年   29篇
  2013年   51篇
  2012年   49篇
  2011年   55篇
  2010年   67篇
  2009年   59篇
  2008年   62篇
  2007年   52篇
  2006年   41篇
  2005年   48篇
  2004年   46篇
  2003年   35篇
  2002年   27篇
  2001年   16篇
  2000年   20篇
  1999年   11篇
  1998年   23篇
  1997年   16篇
  1996年   10篇
  1995年   10篇
  1994年   19篇
  1993年   15篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   9篇
  1988年   3篇
  1987年   11篇
  1985年   4篇
  1984年   12篇
  1983年   7篇
  1982年   4篇
  1981年   9篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   9篇
  1976年   4篇
  1973年   4篇
  1972年   3篇
  1968年   2篇
排序方式: 共有1087条查询结果,搜索用时 546 毫秒
51.
在合适的实验参数下(热力Rossby数R_(OT)=0.1,Taylor数T_a=2.2 ×10~7),在旋转斜压流中,大尺度地形强迫造成低频振荡以及大气环流中的“阻塞”流型。这是由于地形强迫造成的准静止波与行进波的相互作用及共振引起的。地形把波数单一的流动变成多波数的流动。地形强迫使波数减少。  相似文献   
52.
53.
The oxygen fugacity (fO2) of the Earth's upper mantle appears to lie somewhat above that of the iron-wüstite buffer, its fO2 is assumed to have been similar to the present value at the time of core formation. In the upper mantle, the Fe-rich liquid protocore that would form under such conditions of fO2 at elevated temperatures would lie predominantly in the system Fe-S-O. Distribution coefficients for Co, Cu, Ni, Ir, Au, Ir, W, Re, Mo, Ag and Ga between such liquids and basalt are known and minimum values are known for Ge. From these coefficients, upper mantle abundances for the above elements can be calculated by assuming cosmic abundances for the whole Earth and equilibrium between the Fe-S-O protocore and upper mantle. These calculated abundances are surprisingly close to presently known upper mantle abundances; agreements are within a factor of 5, except for Cu, W, and Mo. Therefore, siderophile element abundances in the upper mantle based on known distribution coefficients do not demand a late-stage meteoritic bombardment, and a protocore formed from the upper mantle containing S and O seems likely.As upper mantle abundances fit a local equilibrium model, then either the upper mantle has not been mixed with the rest of the mantle since core formation, or else partition coefficients between protocore and mantle were similar for the whole mantle regardless of P, T, and fO2. The latter possibility seems unlikely over such a P-T range.  相似文献   
54.
This article demonstrates the importance of context on forecast errors. It de J.scribes the development of an unrealistic transportation planning forecast for Denver, Colorado, noting its influence on air quality planning for Denver. The importance of two contextual features, procedural rationality and conflict of interest, to the introduction of error is discussed. The case described implies that different decision-making contexts define different rules of rationality, and substantive rationality may not fit the rules. The type of context and not necessarily a code of ethics will determine this.  相似文献   
55.
The evolution of the Colima volcanic complex can be divided into successive periods characterized by different dynamic and magmatic processes: emission of andesitic to dacitic lava flows, acid-ash and pumice-flow deposits, fallback nuées ardentes leading to pyroclastic flows with heterogeneous magma, plinian air-fall deposits, scoriae cones of alkaline and calc-alkaline nature. Four caldera-forming events, resulting either from major ignimbrite outbursts or Mount St. Helens-type eruptions, separate the main stages of development of the complex from the building of an ancient shield volcano (25 × 30 km wide) up to two summit cones, Nevado and Fuego.The oldest caldera, C1 (7–8 km wide), related to the pouring out of dacitic ash flows, marks the transition between two periods of activity in the primitive edifice called Nevado I: the first one, which is at least 0.6 m.y. old, was mainly andesitic and effusive, whereas the second one was characterized by extrusion of domes and related pyroclastic products. A small summit caldera, C2 (3–3.5 km wide), ended the evolution of Nevado I.Two modern volcanoes then began to grow. The building of the Nevado II started about 200,000 y. ago. It settled into the C2 caldera and partially overflowed it. The other volcano, here called Paleofuego, was progressively built on the southern side of the former Nevado I. Some of its flows are 50,000 y. old, but the age of its first outbursts is not known. However, it is younger than Nevado II. These two modern volcanoes had similar evolutions. Each of them was affected by a huge Mount St. Helens-type (or Bezymianny-type) event, 10,000 y. ago for the Paleofuego, and hardly older for the Nevado II. The landslides were responsible for two horseshoe-shaped avalanche calderas, C3 (Nevado) and C4 (Paleofuego), each 4–5 km wide, opening towards the east and the south. In both cases, the activity following these events was highly explosive and produced thick air-fall deposits around the summit craters.The Nevado III, formed by thick andesitic flows, is located close to the southwestern rim of the C3 caldera. It was a small and short-lived cone. Volcan de Fuego, located at the center of the C4 caldera, is nearly 1500 m high. Its activity is characterized by an alternation of long stages of growth by flows and short destructive episodes related to violent outbursts producing pyroclastic flows with heterogeneous magma and plinian air falls.The evolution of the primitive volcano followed a similar pattern leading to formation of C1 and then C2. The analogy between the evolutions of the two modern volcanoes (Nevado II–III; Paleofuego-Fuego) is described. Their vicinity and their contemporaneous growth pose the problem of the existence of a single reservoir, or two independent magmatic chambers, after the evolution of a common structure represented by the primitive volcano.  相似文献   
56.
A detailed isotopic study of the Manaslu leucogranite was carried out. A U-Pb age of 25 Ma and a whole rock Rb-Sr age isochron of 18 Ma were obtained, suggesting that the magmatic activity lasted at least 7 Ma. Initial Sr isotopic ratios are very high (0.740 to 0.760) and initial Nd isotopic ratios are low ( Nd in : –13 to –16), and they show the existence of large isotopic variations even at the metre scale. These are not the result of perturbations by fluids but rather they reflect the initial isotopic heterogeneity of the source material which has not been obliterated by magmatic processes (e.g. fusion, mixing by convection). These results also support the crustal origin of this leucogranite. The Tibetan slab paragneisses, whose Sr and Nd isotopic ratios are very similar to those of the granite at an age of 20 Ma, are the most probable parental material. Nd model ages for both the leucogranite and the gneisses are in the range 1.5–2 Ga. A model of formation of the Manaslu granite by coalescence of different batches of magma is in agreement with the present data.  相似文献   
57.
58.
Volcan Pico de Orizaba, which marks the eastern end of the Trans-Mexican Volcanic Belt, is one of the largest andesitic composite volcanoes in America. It is located above a series of crustal distensive faults making the boundary of the Coast Plains of the Gulf of Mexico from theAltiplano. For this reason, the volcano shows an asymmetry: from the west, its elevation is about 3,000 m whereas on the eastern side it reaches 4,000 to 4,500 m from its base. The Pico de Orizaba is composed of a primitive stratovolcano raised by a recent summit cone. It has been built by three very distinct volcanic and magmatic phases.
  1. The first one, probably discontinuous effusive activity, lasted more than one million years. It is mainly composed of two pyroxenes-andesites with scarce associated basaltic and dacitic lava-flows. Amphibole is an accessory mineral in most differentiated lavas. On the eastern flank, numerous massive and autobrecciated lava-flows pass outward into thick conglomeratic formations. This effusive phase has built a primitive central volcano and a parasitic cone: the Sierra Negra.
  2. The second phase is of short duration — about 100,000 years or less — in comparison with the first period. It seems that this period began with the formation of a caldera followed by the extrusion of amphibole dacite domes and the overflow of viscous silica-rich (andesite to dacite) lava flows on the northern flank. An intense explosive activity develops:pelean nuées ardentes are associated with extrusion of the domes; numerous plinian eruptions leading to widespread dacitic pumiceous air-falls are produced by both the central and the adventive volcanoes. This sequence of events is interpreted as the progressive emptying of a superficial chamber containing differenciated magma. A rhyolite flow erupted during this phase.
  3. The age of the recent phase is better defined. It started 13,000 years B.P. with the eruption of a dacitic ash-flow containing pumice and scoria-bombs. This was such an intense event that products were found 30 km S.E. of the summit, erasing the top of the former volcano and creating a large crater (4–5 km wide). The present cone, of 1,400–1,500 m elevation, grew in this crater. During a period of 7,000 to 8,000 years, the new stratovolcano experienced various important pyroclastic eruptions with a cycle of the order of 1,000 to 1,500 years. The pyroclastic flows (ash, pumice, and bombs) associated with air-fall deposits are of Saint-Vincent type. They present an heterogeneous dacitic and andesitic magma. The dacitic component is similar to previous differenciated materials. On the other hand, the andesitic magma appears somewhat similar to lava-flows from morphologically young cones erupted outside the central vent system. This eruptive cycle can be interpreted as the result of reoccurring injections of deep basic magma within the crustal chamber. For the last 5,000 years the activity of the modern Pico de Orizaba has again been essentially effusive (andesites) with periodic plinian eruptions.
  相似文献   
59.
Samples of water, sediment and mussels (Mytilus edulis) from the southern Baltic Sea have been analysed for total hydrocarbons by fluorescence spectroscopy and capillary gas chromatography. The sediment and mussel samples have also been analysed for specific aliphatic and aromatic hydrocarbons by computerized capillary gas chromatography-mass spectrometry. The highest hydrocarbon concentrations in all samples occurred either inshore (particularly in Gdansk Bay) or in deep offshore basins where fine sediment accumulates.  相似文献   
60.
Most of the discrepancies in the climate sensitivity of general circulation models (GCMs) are believed to be due to differences in cloud radiative feedback. Analysis of cloud response to climate change in different ‘regimes’ may offer a more detailed understanding of how the cloud response differs between GCMs. In which case, evaluation of simulated cloud regimes against observations in terms of both their cloud properties and frequency of occurrence will assist in assessing confidence in the cloud response to climate change in a particular GCM. In this study, we use a clustering technique on International Satellite Cloud Climatology Project (ISCCP) data and on ISCCP-like diagnostics from two versions of the Hadley Centre GCM to identify cloud regimes over four different geographical regions. The two versions of the model are evaluated against observational data and their cloud response to climate change compared within the cloud regime framework. It is found that cloud clusters produced by the more recent GCM, HadSM4, compare more favourably with observations than HadSM3. In response to climate change, although the net cloud response over particular regions is often different in the two models, in several instances the same basic processes may be seen to be operating. Overall, both changes in the frequency of occurrence of cloud regimes and changes in the properties (optical depth and cloud top height) of the cloud regimes contribute to the cloud response to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号